
Resonances in random binary optical media

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 5235

(http://iopscience.iop.org/0305-4470/23/22/014)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 09:44

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/22
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 23 (1990) 5235-5240. Printed in the UK 
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Switzerland 
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Abstract .  We show that a succession of N random optical layers, whose optical 
index can assume only two values, allows for a perfect transmission (resonances) a t  
fixed frequency d u m .  The resonant frequencies are computed analytically for a 
generic probability distribution of disorder and for an arbitrary incidence angle. The 
arguments can be extended to probability distributions with more than two values. 

Since the pioneering work of Anderson [l] and Mott [2], the localization properties 
of the solutions of the one-dimensional (ID) Schrodinger equation in the presence of 
random potentials have been widely studied. The results of many numerical and 
analytical works show that  in a generic ID  random potential all electronic states are 
localized. This localization is a quantum mechanical phenomenon and takes place for 
arbitrary weak random potentials, if the hopping term is of a sufficiently short range. 
For a review of the localization problem see, e.g., [3]. 

Nevertheless, this does not exclude the possibility of random potentials that  allow 
for extended states. Indeed Denbigh and Rivier [4], and more recently Crisanti e l  a1 
[5], have shown not only that these potentials exist, but that  they form an infinite 
class. However these are, in some sense, special ID  random potentials. Thus we 
can ask if, given a generic random potential, there can be some combinations of the 
parameters that  lead to  extended states regardless of the randomness. 

In this paper we analyse this question in the context of the propagation of 
monochromatic light beams in ID  random optical media. Although Anderson local- 
ization occurs in quantummechanical problems, the phenomenon is essentially due t o  
the wave nature of the electronic states, and thus could be found in any wave phe- 
nomena. There are indeed several experiments which show localization of photons 
[6] and also phonons [7] in random media. The optical experiments have the advan- 
tage that  it is feasible to construct the system accurately and the parameters may be 
precisely controlled and measured [8]. The localization properties can then be easily 
extracted from the measurement of transmission through the medium. In particular 
an ‘extended’ state will result in a peak, also called a ‘resonance’, in the transmission. 

Let us then consider a ID  random optical medium made by a sequence of layers of 
thickness a and optical index ni. For each layer the value of ni is extracted according 
a given probability distribution and ‘quenched’. This can be regarded as a random 
Fabry-Perot interferometer [8]. A monochromatic light beam is then sent on the 
medium with an incidence angle B o .  We remember that the incidence angle Bo is 
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defined as the angle between the light beam and the normal to  the surface of incidence. 
Previous theoretical study of this model considered continuous distributions of nil  with 
[9,10] or without [ll] spatial correlations. By analogy with the localization problem, 
in this case the penetration length < of the light beam in the medium is always finite. 
In the case of an incident angle equal to  the critical angle, the problem becomes 
formally equivalent to  localization in a ID discrete Schrodinger equation at  the band 
edge E = -2 of the pure system [9,11]. 

From an experimental point of view, continuous distribution are, however, hypo- 
thetical situations. In fact, in real experiments ni can assume only a finite number 
of discrete values; usually two [12]. For this reason here we consider an uncorrelated 
binary distribution for the optical index. In other words, ni can assume with equal 
probability only two values. However our analysis can be extended to  probability dis- 
tributions with any number L of values. In particular, continuous distributions can 
be formally obtained in the limit L -+ 00. Without losing generality, we may take 
ni = 1 and ni = n. This problem, for the case of a light beam perpendicular to  the 
surface of the first layer, i.e. 0, = 0, was studied by Flesia [lo], who noted resonances 
for some values of the frequency of the incident beam. 

Here we generalize the results to  the general case of a light beam falling on the 
optical medium a t  an arbitrary incidence angle 0,. We are not able to  compute 
analytically the complete form of the penetration length as a function of the parameter. 
However, we can calculate analytically the frequency values of the resonances. We 
stress that  these resonances exist regardless of the disorder. 

To set up the problem, let us consider a monochromatic light beam, sent from 
an embedding medium with optical index no, falling on a ID random medium made 
of i = 1 , 2 , .  . . , N >> 1 layers of thickness a and optical index n i .  Without losing 
generality we can set a = 1. It is a straightforward exercise to  show that the (complex) 
transmission and reflection coefficients t N  and rN of the N layers are related by 

where 

cos k, 6,: sin ki 
Oi=  ( 

-ki sin ki cos ki 

6, is the wavenumber of the light beam in the embedding medium, and 

6; = ( w / c ) ~  (n: - ni sin2 So) (3) 

is the wavenumber in the ith layer. Here w is the light beam frequency, c the speed 
of light in vacuum and 0, the incidence angle (which is assumed to be in the interval 
[0, $T)). We assume that  there is no absorption, so that ItNI + (rNI = 1. We are 
interested in studying how the penetration length E ,  defined as 

changes as function of the frequency w .  
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From the theory of products of random matrices we have that 

where X is the maximal Lyapunov exponent of the product n, Qj, so that i$, = 1 / X .  
Note that  the Oseledec theorem [13] ensures that A ,  and hence i$, is a non-random 
quantity in the sense tha t ,  for almost all realizations of disorder, i t  does not depend 
on the particular realization. This is why we did not perform any average in (4). 

Let us assume for the moment that ni is constant, namely nj = ii < no. It is well 
known that in this case there exists a critical incidence angle, given by sin 8, = 72/72,, 

such that the transmission coefficient, as a function of the penetration depth, changes 
from an oscillatory behaviour (t-l = A = 0) for 0, < 8,, to  an exponential decay 
(i$-l = X > 0) for 0, > 0,. In terms of random matrices this corresponds t o  having 
expanding matrices, i.e. with the largest eigenvalue of modulus greater than one, for 
Bo > 8, ( I C 2  < 0), and marginal matrices, i.e. with eigenvalues of modulus equal one, 
for 8, < e, ( k 2  > 0). 

- 

In our case there will be in general two critical angles given by 

sin8, = l /n ,  sineb = 72/71,, 

Obviously the existence of these angles depends on n and no. In what follows we 
implicitly assume that 1 < n < no so that both critical angles exist and ea < 8b. 
Depending on the incident angle 8, the wavevector IC can be real or pure imaginary 
[see (3)], corresponding to marginal and expanding matrices Q, , respectively. We 
have, therefore, three possible cases: all matrices are marginal, some are marginal and 
some are expanding, and all are expanding matrices. Similar situations are found in 
ID localization, where the role of 8, is played by the energy of the electrons. 

In our case there are only two possible matrices Q, corresponding to  n, = 1 , n .  
Thus i t  is useful to denote them by A (ni = 1) and B (n ,  = n) .  Since t,here is no 
need of distinction, in what follows A (6) will indicate both the layers with ni = 1 
(n ,  = n)  and the matrices associated with them. Similarly we indicate by k, ( ICb)  the 
wavenumber in the layers A (E). 

To find where one could have resonances let us consider the physics of the problem. 
When the light beam reaches the boundary between two successive layers, a fraction 
t will penetrate inside the next layer while a fraction r (1.1 = 1 - It[)  will be reflected 
back. This will happen regardless of the incident angle a t  the specific boundary. The  
only difference is that when the angle becomes larger than the critical incidence angle 
of the boundary, the wave will be exponentially damped. This in terms of matrices 
corresponds to  having an expanding Q. Therefore, if 8, > 8, the penetration length 
i$ is always finite since the light is always damped. This is easily seen from (4) ,  since 
now all matrices are expanding. In the range 8, < 8, < 8b there will be a finite 
fraction of expanding and marginal matrices arranged in a random order. Thus in 
general i$ will be again finite. Let us stress, however, that  this is the range where 
one can apply the theory of [5] to  build random sequences of layers which allow for 
infinite penetration length. Here, one of the matrices A and B is marginal and one 
is expanding, thus if they were arranged in a periodic order, one could apply a sort 
of Bloch theorem obtaining bands where < = ca. The penetration length, therefore, 
can be made infinite a t  selected frequencies by using the method of [5] to  build the 
rbndom sequence of layers. 
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Note that even if ( is always finite in a generic random case, we expect tha t  its 
behaviour would resemble ‘qualitatively’ tha t  of a periodic ordering. In our case, 
since A and B are uncorrelated, the relevant periodic order is A B A B A B .  . .. Indeed a 
numerical calculation leads to a <-behaviour for the random cwe very similar to tha t  
observed in the above periodic order, see figure 1. Note tha t ,  even if < is always finite, 
there are peaks for w values inside the bands of the ordered system. 

2 L A 

0 0.5 1 1.5 2 

0 I nc 
Figure 1. 5-l as a function of w for ea < 80 < Ob. The results are compared with 
behaviour for the periodic ordering ABAB . . . (smooth curve). The parameters used 
are: no = 2, n = 3 and Bo = 0.6. 

From the above discussion it follows that the only range where one could find resc- 
nances is 0 5 Bo < B,, where the light beam penetrates in all layers without damping. 
This, however, is not a sufficient condition for an infinite ( since the components re- 
flected back at each boundary layer interfere with the propagating beam. The  result 
of the interference depends on the difference of optical paths between the two beams, 
which results in a phase difference. Since the order of the layers is completely random, 
the interference is in general destructive, leading to a complete decay of the light wave 
over a finite distance (. This is a well known result in the theory of random matrices 
and ID  localization. 

However, since at fixed optical indexes, the length of the optical path depends 
continuously on the light frequency, there may be w values for which the interference 
becomes constructive. We then say that there is a resonance, and ( = CO. A simple 
inspection of the matrix Qi, shows tha t  a trivial resonance is obtained for ki = 0, 
i.e. w = 0. This, however is not a very interesting case. The  question is, therefore, 
are there non-trivial w values for Bo < 0, which satisfy a condition for a constructive 
interference? The  physics of the problem suggests that  if there are resonances, they 
can appear only when w is such tha t  one of the two types of layers (e.g. A) contains 
exactly an  integer or a semi-integer number of wavelengths of the light. In fact in this 
case the effect of these layers is just  an overall phase exp(icu) and can be disregarded. 
In ternis of random matrices this means tha t  in the product (4) we are left only with 
the matrices B, so that E - ’  = PA, = 0, since the matrix B is marginal. Here p is 
the density of layers B i n  the N layers medium and A, is the maximal Lyapunov 
exponent of the product of B matrices. Thus  there will be a resonance every time 



Resonances  i n  r a n d o m  b inary  opt ica l  med ia  5239 

the monochromatic light wave $k(r) satisfies $k(r + 1)  = ( - l ) p $ ~ ~ ( z )  in one of the 
two types of layers. This leads to the resonance conditions k, or k, equal to p n  with 
p =  1 , 2 , 3 , . . . .  

A second type of resonance can be present. These could appear when the wavefunc- 
tion changes by a factor f l  over two consecutive layers. Since the  order is completely 
random, we need to consider only the cases AA,  BB and AB.  The  analysis of this 
case leads to resonances for k, = pn/2 and k, = qn/2 with p1 q odd integers. The  
demonstration in this case is less direct and will be not reported here. 

Finally there are special resonances when Bo is equal to the lower critical angle 
0,. We call these 'critical resonances', and are obtained for k, = 0 and k, = pn with 
p = 1 , 2 , 3 , .  . .. Note that there are no resonances if k, = pn/2 with p an odd integer. 
Indeed in this case it can be demonstrated with the help of the theory of products of 
random matrices that ( is finite. In particular, if pn/2 >> 1 then 

which is in a very good agreement with numerical calculations even for small values 
of p .  For example, for p = 1 the above formula gives 0.027 56 and the numerical 
value is 0.042 05, whereas p = 3 (6) gives 0.005 62 and from numerical simulations we 
get 0.005 34. This result has been obtained with the microcanonical method recently 
developed by Deutsch and Paladin [14]. As far as we know this is the first example 
of an  analytical result obtained with this method. The calculation will be reported 
elsewher e. 

Since the probability of having A or B are completely uncorrelated, these are all 
the possible resonances. I t  is easy to express the above result as conditions on w .  We 
then have for 0 5 Bo < B ,  

p =  1 , 2 , 3 , . . .  (7a )  

( 7 c )  
2 = { ;;; p = 1 , 2 , 3 , .  . . ( 7 b )  T C  

PXal2 = qXbl2 p =  1 , 3  , . . .  q =  1 , 3  , . . . > p  

where x;' = (1 - nisin2Bo)' /2 and x i 1  = ( n 2  - nisin2Bo)' /2.  At the critical angle 
8, the resonances (7a) disappear. These results are in very good agreement with 
numerical calculations. In figure 2 we shown a typical <-behaviour in the range 0 5 

From the above analysis it is clear that  these resonances exist regardless of the 
disorder. Thus  they will be in general present for any binary distribution of optical 
indexes, with or without spatial correlations. Nevertheless, we note that for some 
special distributions other resonances could appear. These, however, are not generic, 
in the sense that they depend on the particular probability distribution. 

To conclude, we stress that  our results can be extended to  distributions of ni with 
more than two values. In this case, however, the number of constraints to be satisfied 
to  have a constructive interference is higher. Thus  in general we expect a decrease in 
the number of resonances. This is in agreement with recent experimental results on 
conduction in disordered superlattices [15]. In the limit of a continuous distribution 
the number of constraints to be satisfied become infinite and no resonances are found, 
in agreement with the results of [9,11,15]. Here we mean resonances in the strict 
sense, i.e. E - '  = 0. In fact, if one allows for a small continuous spread about the two 
values of n, ,  < is finite. Nevertheless it exhibits peaks a t  w values given by ( 7 ) ,  whose 
values diverge as the spread width goes to  zero. Therefore if the medium is too short 
one could still observe transmission of light. 

80 I 'a. 




